Entanglement Dynamics in Quantum Networks: Towards Scalable Quantum Information Processing

Main Article Content

Dr. Ram Kumar Avtar

Abstract

Entanglement dynamics plays a crucial role in the development of scalable quantum information processing architectures. Quantum networks, composed of interconnected quantum nodes, offer promising avenues for the distribution and manipulation of quantum information over long distances. In this paper, we investigate the dynamics of entanglement in quantum networks and explore strategies for achieving scalable quantum information processing. the generation, distribution, and preservation of entanglement in various network topologies and investigate the impact of noise and decoherence on entanglement dynamics. Furthermore, we discuss potential applications of entanglement in quantum communication, cryptography, and computation, highlighting the importance of understanding and controlling entanglement dynamics for realizing practical quantum technologies. Through theoretical analysis and numerical simulations, we provide insights into the challenges and opportunities associated with entanglement dynamics in quantum networks, paving the way towards scalable quantum information processing architectures.

Article Details

How to Cite
Kumar Avtar, D. R. (2024). Entanglement Dynamics in Quantum Networks: Towards Scalable Quantum Information Processing. Journal of Quantum Science and Technology, 1(1), 30–34. https://doi.org/10.36676/jqst.v1.i1.07
Section
Original Research Articles

References

Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030.

Sangouard, N., Simon, C., de Riedmatten, H., & Gisin, N. (2011). Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83(1), 33.

Duan, L. M., & Monroe, C. (2010). Quantum networks with trapped ions. Reviews of Modern Physics, 82(2), 1209.

Briegel, H. J., Dür, W., Cirac, J. I., & Zoller, P. (1998). Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters, 81(26), 5932.

Childress, L., & Hanson, R. (2013). Diamond NV centers for quantum computing and quantum networks. MRS Bulletin, 38(2), 134-138.

Hensen, B., Bernien, H., Dreau, A. E., Reiserer, A., Kalb, N., Blok, M. S., ... & Taminiau, T. H. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682-686.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O’Brien, J. L. (2010). Quantum computers. Nature, 464(7285), 45-53.

Reiserer, A., & Rempe, G. (2015). Cavity-based quantum networks with single atoms and optical photons. Reviews of Modern Physics, 87(4), 1379.

Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C., Lloyd, S., & Braunstein, S. L. (2019). Advances in photonic quantum sensing. Nature Photonics, 13(9), 720-725.

Monroe, C., & Kim, J. (2013). Scaling the ion trap quantum processor. Science, 339(6124), 1164-1169.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.