Quantum Advantage in Machine Learning: A Comparative Study of Quantum and Classical Algorithms

Main Article Content

Dr. Ramesh

Abstract

Quantum computing holds the promise of revolutionizing various fields, including machine learning, by leveraging quantum phenomena to perform computations beyond the capabilities of classical computers. In this paper, we present a comparative study of quantum and classical algorithms in the context of machine learning tasks. We examine the advantages of quantum algorithms, such as quantum parallelism and entanglement, and their potential to outperform classical algorithms in tasks such as classification, clustering, and optimization. Through theoretical analysis and empirical experiments, we demonstrate the strengths and limitations of quantum machine learning algorithms, highlighting their potential for achieving quantum advantage in certain scenarios. Additionally, we discuss the challenges and opportunities for integrating quantum computing into machine learning pipelines and outline future research directions in this rapidly evolving field.

Article Details

How to Cite
Ramesh, D. (2024). Quantum Advantage in Machine Learning: A Comparative Study of Quantum and Classical Algorithms. Journal of Quantum Science and Technology, 1(1), 25–29. https://doi.org/10.36676/jqst.v1.i1.06
Section
Original Research Articles

References

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum Machine Learning. Nature, 549(7671), 195-202.

Farhi, E., & Neven, H. (2018). Classification with Quantum Neural Networks on Near Term Processors. arXiv preprint arXiv:1802.06002.

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum Support Vector Machine for Big Data Classification. Physical Review Letters, 113(13), 130503.

Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An Introduction to Quantum Machine Learning. Contemporary Physics, 56(2), 172-185.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.

Preskill, J. (2018). Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.

Cai, X. D., Liu, C. F., & Lu, H. Z. (2018). Quantum Machine Learning: A Review. International Journal of Theoretical Physics, 57(11), 3266-3292.

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., ... & Gambetta, J. M. (2019). Supervised Learning with Quantum Enhanced Feature Spaces. Nature, 567(7747), 209-212.

Aaronson, S., & Arkhipov, A. (2011). The Computational Complexity of Linear Optics. Theory of Computing, 9(4), 143-252.

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2019). Data Reuploading in Quantum Machine Learning Models for Differential Privacy. Physical Review Letters, 122(23), 230501.

Benedetti, M., Realpe-Gómez, J., Biswas, R., & Perdomo-Ortiz, A. (2019). Estimation of Effective Temperatures in Quantum Annealers for Sampling Applications: A Case Study with Possible Quantum Advantage. Physical Review X, 9(3), 031045.

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., & Wossnig, L. (2018). Quantum Machine Learning: A Classical Perspective. Proceedings of the Royal Society A, 474(2209), 20170551.

Schuld, M., Fingerhuth, M., & Petruccione, F. (2018). Implementing a Distance-Based Classifier with a Quantum Interference Circuit. Physical Review A, 97(3), 032313.

Wan, C. C., Dahlsten, O., Kristjánsson, H., & Gardner, R. (2019). Quantum Generalisation of Feedforward Neural Networks. Quantum Science and Technology, 4(4), 045003.

Arunachalam, S., & de Wolf, R. (2017). A Survey of Quantum Learning Theory. npj Quantum Information, 3(1), 1-17.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.