Quantum Cryptography: Secure Communication Beyond Classical Limits

Main Article Content

Rohit Goyal

Abstract

Quantum cryptography promises secure communication protocols that surpass the limitations of classical cryptography. By leveraging the principles of quantum mechanics, particularly the phenomenon of quantum entanglement and the uncertainty principle, quantum cryptography protocols offer provable security guarantees against eavesdropping attacks. In this paper, we provide an overview of quantum cryptography, discussing its theoretical foundations, key protocols such as quantum key distribution (QKD), and experimental implementations. We highlight the advantages of quantum cryptography over classical cryptographic techniques and explore its potential applications in secure communication networks, financial transactions, and data privacy. Furthermore, we discuss ongoing research efforts and challenges in the practical deployment of quantum cryptography systems, including the development of robust quantum hardware and the integration of quantum cryptographic protocols into existing communication infrastructures. Overall, quantum cryptography holds great promise for enabling secure communication channels that are resilient to quantum attacks, paving the way for a new era of ultra-secure information exchange.

Article Details

How to Cite
Goyal, R. (2024). Quantum Cryptography: Secure Communication Beyond Classical Limits. Journal of Quantum Science and Technology, 1(1), 1–5. https://doi.org/10.36676/jqst.v1.i1.01
Section
Original Research Articles

References

Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 175-179.

Ekert, A. K. (1991). Quantum cryptography based on Bell's theorem. Physical Review Letters, 67(6), 661-663.

Gisin, N., & Thew, R. (2007). Quantum communication. Nature Photonics, 1(3), 165-171.

Lo, H. K., & Chau, H. F. (1999). Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283(5410), 2050-2056.

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Luetkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350.

Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412), eaam9288.

Pirandola, S., & Braunstein, S. L. (2019). Advances in quantum teleportation. Nature Reviews Physics, 2(12), 689-707.

Ma, X., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., ... & Jennewein, T. (2012). Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489(7415), 269-273.

Wang, X., Chen, L. K., Li, W., Huang, L., Liu, C., Xu, F., ... & Pan, J. W. (2016). Experimental ten-photon entanglement. Physical Review Letters, 117(21), 210502.

Yin, J., Cao, Y., Li, Y. H., Liao, S. K., Zhang, L., Ren, J. G., ... & Chen, K. (2016). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140-1144.

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.