Advances in Quantum Engineering: Harnessing Quantum Phenomena for Practical Applications

Main Article Content

Swapnil Kumar

Abstract

Quantum engineering represents a burgeoning field at the intersection of quantum mechanics, engineering, and technology, aimed at harnessing the unique properties of quantum systems for practical applications. This paper provides an overview of recent advances in quantum engineering and explores the diverse array of applications enabled by quantum phenomena. From quantum computing and quantum communication to quantum sensing and metrology, quantum engineering promises to revolutionize various domains by offering unprecedented capabilities for processing and manipulating information, sensing and detecting signals, and simulating complex systems. By leveraging the principles of superposition, entanglement, and coherence, researchers are developing novel quantum devices and technologies with the potential to transform industries ranging from healthcare and telecommunications to finance and materials science. developments in quantum engineering, highlights emerging trends and challenges, and outlines future directions for research and innovation in this exciting and rapidly evolving field.

Article Details

How to Cite
Kumar, S. (2024). Advances in Quantum Engineering: Harnessing Quantum Phenomena for Practical Applications. Journal of Quantum Science and Technology, 1(1), 6–9. https://doi.org/10.36676/jqst.v1.i1.02
Section
Original Research Articles

References

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.

Bouwmeester, D., Ekert, A., & Zeilinger, A. (Eds.). (2000). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer.

Degen, C. L., Reinhard, F., & Cappellaro, P. (2017). Quantum sensing. Reviews of Modern Physics, 89(3), 035002.

Dutt, M. V. G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., ... & Lukin, M. D. (2007). Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316(5829), 1312-1316.

Awschalom, D. D., Hanson, R., Wrachtrup, J., & Zhou, B. B. (2013). Quantum technologies with optically interfaced solid-state spins. Nature Photonics, 7(8), 581-591.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'Brien, J. L. (2010). Quantum computers. Nature, 464(7285), 45-53.

Devoret, M. H., & Schoelkopf, R. J. (2013). Superconducting circuits for quantum information: an outlook. Science, 339(6124), 1169-1174.

Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C. L., Kimble, H. J., & Cirac, J. I. (2018). Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 90(3), 031002.

Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L., & Petta, J. R. (2013). Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science, 339(6124), 1174-1179.

Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57(1), 120-126.

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.